

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Sultan 0.3.1
 documentation »

 [image: Sultan logo]

Sultan

Command and Rule over your Shell

Sultan is a Python package for interfacing with command-line utilities, like
yum, apt-get, or ls, in a Pythonic manner. It lets you run command-line
utilities using simple function calls.

Here is how you’d use Sultan:

from sultan.api import Sultan

simple way
s = Sultan()
s.sudo("yum install -y tree").run()

with context management (recommended)
with Sultan.load(sudo=True) as s:
 s.yum("install -y tree").run()

What if we want to install this command on a remote machine? You can easily
achieve this using context management:

with open(sudo=True, hostname="myserver.com") as s:
 s.yum("install -y tree").run()

If you enter a wrong command, Sultan will print out details you need to debug and
find the problem quickly.

Here, the same command was run on a Mac:

In [1]: with Sultan.load(sudo=True) as s:
 ...: s.yum("install -y tree").run()
 ...:
[sultan]: sudo su - root -c 'yum install -y tree;'
Password:
[sultan]: Unable to run 'sudo su - root -c 'yum install -y tree;''
[sultan]: --{ TRACEBACK }--
[sultan]: | Traceback (most recent call last):
[sultan]: | File "/Users/davydany/projects/aeroxis/sultan/src/sultan/api.py", line 159, in run
[sultan]: | stdout = subprocess.check_output(commands, shell=True, stderr=stderr)
[sultan]: | File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/subprocess.py", line 573, in check_output
[sultan]: | raise CalledProcessError(retcode, cmd, output=output)
[sultan]: | CalledProcessError: Command 'sudo su - root -c 'yum install -y tree;'' returned non-zero exit status 127
[sultan]: ---
[sultan]: --{ STDERR }---
[sultan]: | -sh: yum: command not found
[sultan]: ---

Want to get started? Simply install Sultan, and start writing your clean code:

pip install --upgrade sultan

If you have more questions, check the docs! http://sultan.readthedocs.io/en/latest/

Table of Contents

	Installing Sultan

	Frequently Asked Questions

	Examples
	Example 1: Getting Started

	Example 2: Sultan with Context Management

	Example 3: Compounding with And (&&)

	Example 4: Redirecting with Pipes (|)

	Example 5: Redirecting Output to File

	Example 6: Read from Standard Input

	Example 7: Running as Another User

	Example 8: Running as Root

	Index

	Module Index

	Search Page

 © Copyright 2016, Aeroxis, LLC.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sultan 0.3.1
 documentation »

Installing Sultan

Sultan is simple and lightweight. To install Sultan, simply run the following
in your command line:

pip install --upgrade sultan

 © Copyright 2016, Aeroxis, LLC.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sultan 0.3.1
 documentation »

Frequently Asked Questions

What is Sultan?

Sultan allows you to interface with command-line utilities from Python without
having to write your scripts in Bash.

Why can’t I use `subprocess`?

Python’s standard library offers the subprocess library, but it isn’t very
“Pythonic”. The ‘subprocess’ module has a bunch of methods for writing commands
to the shell, but the code is overly verbose, and tough to read.

Any reason to use this over ansible or saltstack?

Sultan is just a simpler interface to command line utilities. It helps bypass
the arcane language constructs of Bash.

Sultan is made to help with scripts that we create with Bash, that tend to get
complex. When these scripts get complex, Bash just gets to be a pain to deal
with, since it lacks package management, it lacks unit testing, and
<insert library that you need for managing complex scripts>.
So Sultan allows scripts to be reusable and tested with standard Python.

Ansible and Salt are powerful for provisioning a system. Sultan can’t compete
in that realm, but it does help with complex scripts. Even if you want Ansible
or Salt to perform something on a remote box, like installing a package, it
requires some overhead in setting them up. Sultan is simple with no external
dependencies, and installs itself with just “pip install sultan”.

Sultan simply wraps the subprocess module in Python’s standard library, but it
also provides a nice to read logging system, and provides you with relevant
information when a command fails.

All in all, it can’t compete with standard DevOps tools used for provisioning.
It does help with not having to use Bash heavily, if you’re a Python programmer.

 © Copyright 2016, Aeroxis, LLC.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Sultan 0.3.1
 documentation »

Examples

This tutorial will go through various examples to help in better understanding
how to use Sultan. Each example will build on the lessons learned from the
previous examples.

Example 1: Getting Started

We typically use yum or apt-get to install a package on our system.
This example installs a package on our system using Sultan. Here is how
to get started:

from sultan.api import Sultan

s = Sultan()
s.yum("install", "-y", "tree").run()

Sultan allows multiple syntaxes depending on what your first command is.
Suppose you want to not use separate tokens, and instead you want to use
one string, you can write the above example as such:

from sultan.api import Sultan

s = Sultan()
s.yum("install -y tree").run()

Suppose your user is not a root-user, and you want to call to sudo to install
the tree package. You’d do the following:

from sultan.api import Sultan

with Sultan.load(sudo=True) as s:
 s.yum('install -y tree').run()

NOTE: For the sake of brevity, this tutorial will now start to assume that
Sultan has been imported from sultan.api and, the variable s has been
instantiated as an instance of Sultan (s = Sultan()). This will change in
situations where the documentation requires a different usage.

Example 2: Sultan with Context Management

There are times when we want to manage the context of where Sultan executes
your code. To aid with this, we use Sultan in Context Management mode.

Suppose we want to cat out the contents of /etc/hosts, we’d do the following:

with Sultan.load(cwd="/etc") as s:
 s.cat("hosts").run()

Example 3: Compounding with And (&&)

There are times when we need multiple commands to run at once. We use the
and_() command to get through this. Here is an example:

runs: 'cd /tmp && touch foobar.txt'
s.cd("/tmp").and_().touch("foobar.txt").run()

Example 4: Redirecting with Pipes (|)

In Bash, we use the pipe | operator to redirect the output of the call to a
command to another command. We do this in Sultan with the pipe command. Here
is an example:

runs: 'ls -l | sed -e "s/[aeio]/u/g"'
s.ls('-l').pipe().sed('-e', '"s/[aeio]/u/g"').run()

Example 5: Redirecting Output to File

In Bash, we often want to redirect the output of a command to file. Whether
the output is in stdout or stderr, we can redirect it to a file with
Sultan. Here is an example:

runs: 'cat /etc/hosts > ~/hosts'
s.cat("/etc/hosts").redirect(
 "~/hosts",
 append=False,
 stdout=True,
 stderr=False)

In the example above, we redirected the output of /etc/hosts to ~/hosts.
We only outputted the stdout, and didn’t append to the file if it existed.
Feel free to customize this method as it fits your needs.

Example 6: Read from Standard Input

Python has the raw_input built-in to read from standard input. Sultan’s API
wraps around raw_input to ask the user for their input from the command line
and returns the value.

Here is the example:

name = s.stdin("What is your name?")
print "Hello %s" % name

Example 7: Running as Another User

Sultan can run commands as another user. You need to enable sudo
mode to do this.

Here is an example:

runs: sudo su - hodor -c 'cd /home/hodor && ls -lah .;'
with Sultan.load(sudo=True, user='hodor', cwd='/home/hodor') as s:
 sultan.ls('-lah', '.')

Example 8: Running as Root

Sultan can run commands as the root user. You need to only enable sudo
mode to do this.

Here is an example:

runs: sudo su - root -c 'ls -lah /root;'
with Sultan.load(sudo=True) as sultan:
 sultan.ls('-lah', '/root')

 © Copyright 2016, Aeroxis, LLC.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	Sultan 0.3.1
 documentation »

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sultan	

 	
 	
 sultan.api	

 © Copyright 2016, Aeroxis, LLC.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	Sultan 0.3.1
 documentation »

Index

 S

S

 	

 	sultan.api (module)

 © Copyright 2016, Aeroxis, LLC.
 Created using Sphinx 1.4.8.

 _static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/sultan-logo.png
sultan

_static/comment-bright.png

