
Sultan Documentation
Release 0.9.1

Aeroxis, LLC

Mar 04, 2019

Table of Contents

1 Installing Sultan 3

2 Frequently Asked Questions 5
2.1 What is Sultan? . 5
2.2 Why use Sultan? . 5
2.3 Why can’t I use subprocess? . 6
2.4 Any reason to use this over ansible or saltstack? . 6

3 Sultan Examples 7
3.1 WARNING * WARNING * WARNING . 7
3.2 Example 1: Getting Started . 7
3.3 Example 2: Sultan with Context Management . 8
3.4 Example 3: Compounding with And (&&) and Or (||) . 8
3.5 Example 4: Redirecting with Pipes (|) . 8
3.6 Example 5: Redirecting Output to File . 8
3.7 Example 6: Read from Standard Input . 9
3.8 Example 7: Running as Another User . 9
3.9 Example 8: Running as Root . 9
3.10 Example 9: Disable Logging . 9
3.11 Example 10: Commands with Hyphones (i.e.: apt-get) . 10
3.12 Example 11: Sourcing a File before Running a Command . 10
3.13 Example 12: Results from a Command . 10
3.14 Example 13: Streaming Results from a Command . 11
3.15 Example 14: Custom Executable . 11

4 Sultan SSH Examples 13
4.1 WARNING * WARNING * WARNING . 13
4.2 Example 1: SSH to Remote Host as the Current User . 13
4.3 Example 2: SSH to Remote Host as a Different User . 13
4.4 Example 3: Passing Additional Options (Port) . 14
4.5 Example 4: Passing Additional Options (Identity File) . 14

5 What is Sultan? 15
5.1 WARNING * WARNING * WARNING . 16

i

ii

Sultan Documentation, Release 0.9.1

Command and Rule Over Your Shell

Table of Contents 1

Sultan Documentation, Release 0.9.1

2 Table of Contents

CHAPTER 1

Installing Sultan

Sultan is simple and lightweight. To install Sultan, simply run the following in your command line:

pip install --upgrade sultan

3

Sultan Documentation, Release 0.9.1

4 Chapter 1. Installing Sultan

CHAPTER 2

Frequently Asked Questions

2.1 What is Sultan?

Sultan allows you to interface with command-line utilities from Python without having to write your scripts in Bash.

2.2 Why use Sultan?

2.2.1 Leverage the Power of Bash from Python

Bash, while it seems arcane, actually is quite powerful! Creating a Tar Archive of a directory requires us to read up on
the tar API or check StackOverflow, but if you know how to do it in Bash, you’d be done before you finish reading the
StackOverflow post!

This promotes simplicity, and follows the KISS principle (Keep It Simple Stupid!)

2.2.2 Better Syntax:

Bash’s syntax for loops, conditionals, and functions work well, but require a lot of nuances that we’re just not used to
with a modern language like Python.

Sultan allows you to use Python Syntax, and never touch Bash’s arcaine syntax ever again!

2.2.3 Project Management:

Sultan was designed because Bash just does not scale well with most projects. As much as we can try, Bash does not
have a proper package management system. So, we’re left with script files that are sourced, and called, but it gets quiet
complicated as soon as you have more than 10 scripts.

Python has a great package and module system that allows us to create complex projects using the Python language,
but also leverage a lot of great tools and functionality that we’ve grown to love and expect from Bash.

This promotes reusability, with the DRY (Don’t Repeat Yourself) principle. If you create a great solution with Sultan,
publish it on PyPi and others will use it.

5

Sultan Documentation, Release 0.9.1

2.2.4 Unit Testing

Out of the Box, Bash does not come with any Unittesting frameworks, but Python does! You can build unittests and
integration tests with Sultan to ensure your code does EXACTLY what you want it to do.

2.3 Why can’t I use subprocess?

Python’s standard library offers the subprocess library, but it isn’t very “Pythonic”. The ‘subprocess’ module has a
bunch of methods for writing commands to the shell, but the code is overly verbose, and tough to read.

2.4 Any reason to use this over ansible or saltstack?

Sultan is just a simpler interface to command line utilities. It helps bypass the arcane language constructs of Bash
(among other things. See Why use Sultan? above).

Sultan was created to help with scripts that we create with Bash, that tend to get complex. When these scripts get
complex, Bash just gets to be a pain to deal with, since it lacks proper package management, it lacks unit testing, and
<insert library that you need for managing complex scripts>. So Sultan allows scripts to be reusable and tested with
standard Python.

Ansible and Salt are powerful for provisioning a system. Sultan can’t compete in that realm, but it does help with
complex scripts. Even if you want Ansible or Salt to perform something on a remote box, like installing a package, it
requires some overhead in setting them up. Sultan is simple with no external dependencies, and installs itself with just
“pip install sultan”.

Sultan simply wraps the subprocess module in Python’s standard library, but it also provides a nice to read logging
system, and provides you with relevant information when a command fails.

All in all, it can’t compete with standard DevOps tools used for provisioning. It does help with not having to use Bash
heavily, if you’re a Python programmer.

6 Chapter 2. Frequently Asked Questions

CHAPTER 3

Sultan Examples

This tutorial will go through various examples to help in better understanding how to use Sultan. Each example will
build on the lessons learned from the previous examples.

3.1 WARNING * WARNING * WARNING

When you’re using Sultan, you are running commands directly on your local shell, so please, do not run untested and
untrusted code. You are taking the risk if you are running untrusted code.

Sultan runs POpen with shell=True, and according to Python documentation, this can be a security hazard if combined
with untrusted input. More information can be found here:

• Python 2: https://docs.python.org/2/library/subprocess.html#frequently-used-arguments

• Python 3: https://docs.python.org/3/library/subprocess.html#frequently-used-arguments

3.2 Example 1: Getting Started

We typically use yum or apt-get to install a package on our system. This example installs a package on our system
using Sultan. Here is how to get started:

from sultan.api import Sultan

s = Sultan()
s.yum("install", "-y", "tree").run()

Sultan allows multiple syntaxes depending on what your first command is. Suppose you want to not use separate
tokens, and instead you want to use one string, you can write the above example as such:

from sultan.api import Sultan

s = Sultan()
s.yum("install -y tree").run()

Suppose your user is not a root-user, and you want to call to sudo to install the tree package. You’d do the following:

from sultan.api import Sultan

with Sultan.load(sudo=True) as s:
s.yum('install -y tree').run()

7

https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://docs.python.org/3/library/subprocess.html#frequently-used-arguments

Sultan Documentation, Release 0.9.1

NOTE: For the sake of brevity, this tutorial will now start to assume that Sultan has been imported from sultan.api
and, the variable s has been instantiated as an instance of Sultan (s = Sultan()). This will change in situations where
the documentation requires a different usage.

3.3 Example 2: Sultan with Context Management

There are times when we want to manage the context of where Sultan executes your code. To aid with this, we use
Sultan in Context Management mode.

Suppose we want to cat out the contents of /etc/hosts, we’d do the following:

with Sultan.load(cwd="/etc") as s:
s.cat("hosts").run()

3.4 Example 3: Compounding with And (&&) and Or (||)

There are times when we need multiple commands to run at once. We use the and_() command to get through this.
Here is an example:

runs: 'cd /tmp && touch foobar.txt'
with Sultan.load() as s:

s.cd("/tmp").and_().touch("foobar.txt").run()

There are also times that we want to run 2 commands, but run the 2nd command even if the first command fails. For
this, you will need to use the or_() command. Here is an example:

runs: 'mkdir /tmp || mkdir /bar'
with Sultan.load() as s:

s.mkdir('/tmp').or_().mkdir('/bar').run()

3.5 Example 4: Redirecting with Pipes (|)

In Bash, we use the pipe | operator to redirect the output of the call to a command to another command. We do this in
Sultan with the pipe command. Here is an example:

runs: 'ls -l | sed -e "s/[aeio]/u/g"'
with Sultan.load() as s:

s.ls('-l').pipe().sed('-e', '"s/[aeio]/u/g"').run()

3.6 Example 5: Redirecting Output to File

In Bash, we often want to redirect the output of a command to file. Whether the output is in stdout or stderr, we can
redirect it to a file with Sultan. Here is an example:

runs: 'cat /etc/hosts > ~/hosts'
with Sultan.load() as s:

s.cat("/etc/hosts").redirect(
"~/hosts",

8 Chapter 3. Sultan Examples

Sultan Documentation, Release 0.9.1

append=False,
stdout=True,
stderr=False).run()

In the example above, we redirected the output of /etc/hosts to ~/hosts. We only outputted the stdout, and didn’t append
to the file if it existed. Feel free to customize this method as it fits your needs.

3.7 Example 6: Read from Standard Input

Python has the raw_input built-in to read from standard input. Sultan’s API wraps around raw_input to ask the user
for their input from the command line and returns the value.

Here is the example:

name = s.stdin("What is your name?")
print "Hello %s" % name

3.8 Example 7: Running as Another User

Sultan can run commands as another user. You need to enable sudo mode to do this.

Here is an example:

runs: sudo su - hodor -c 'cd /home/hodor && ls -lah .;'
with Sultan.load(sudo=True, user='hodor', cwd='/home/hodor') as s:

sultan.ls('-lah', '.').run()

3.9 Example 8: Running as Root

Sultan can run commands as the root user. You need to only enable sudo mode to do this.

Here is an example:

runs: sudo su - root -c 'ls -lah /root;'
with Sultan.load(sudo=True) as sultan:

sultan.ls('-lah', '/root').run()

3.10 Example 9: Disable Logging

If you need to disable logging all together, simply add set ‘logging’ to False while loading Sultan with Context.

Here is an example:

runs without logging
with Sultan.load(logging=False) as sultan:

sultan.ls('-lah', '/tmp').run()

3.7. Example 6: Read from Standard Input 9

Sultan Documentation, Release 0.9.1

3.11 Example 10: Commands with Hyphones (i.e.: apt-get)

There are commands that are available in the shell that use hyphens which conflict with the function naming conven-
tions of Python, for example apt-get. To get around this, use double underscores (__).

Here is an example:

with Sultan.load(sudo=True) as sultan:
sultan.apt__get('install', 'httpd').run()

which runs:

sudo apt-get install httpd;

3.12 Example 11: Sourcing a File before Running a Command

This is rare, but there are times that we would like to source a file before running a command. We can manually do
this with the Bash And Operator (&&) but Sultan has the ability to do this automatically for you.

Here is an example:

with Sultan.load(
cwd='/home/davydany/projects/sultan',
src='/home/davydany/.virtualenv/sultan/bin/activate') as s:

s.pip('install', '-r', 'requirements.txt').run()

which runs:

source /home/davydany/.virtualenv/sultan/bin/activate && cd /home/davydany/projects/
→˓sultan && pip install -r requirements.txt;

3.13 Example 12: Results from a Command

When you run a command, your shell gives back results in stdout and stderr. Sultan returns a Result object which has
stdout, stderr, traceback and rc attributes.

Here is an example that shows how to get the results of a command:

with Sultan.load() as s:
result = s.yum('install', '-y', 'postgresql').run()
result.stdout # the stdout
result.stderr # the stderr
result.traceback # the traceback
result.rc # the return code

stdout and stderr returns a list, where each element is a line from stdout and stderr; rc is an integer.

Most times, you don’t need to access the results of a command, but there are times that you need to do so. For that,
the Result object will be how you access it.

10 Chapter 3. Sultan Examples

Sultan Documentation, Release 0.9.1

3.14 Example 13: Streaming Results from a Command

Here is an example that shows how to get real-time output from a command:

with Sultan.load() as s:
result = s.yum('install', '-y', 'postgresql').run(streaming=True)
while True:

if full output is needed, read the pipes one last time
after `is_complete == True` to avoid a race condition
complete = result.is_complete
for line in result.stdout:

print(line)
for line in result.stderr:

print(line)
if complete:

break
time.sleep(1)

3.15 Example 14: Custom Executable

By default python’s subprocess <https://docs.python.org/3/library/subprocess.html#popen-constructor> executes the
program through /bin/sh on POSIX systems. In the rare circumstances when that’s not desired, you can change it with
the ‘executable’ argument while loading Sultan with Context.

Here is an example:

Here is an example that shows how to get the results of a command:

with Sultan.load(executable='/bin/bash') as sultan_bash:

result = sultan_bash.ps('-p', '$$', '-ocomm=')
assert result == 'bash'

with Sultan.load(executable='/bin/dash') as sultan_other:

result = sultan_other.ps('-p', '$$', '-ocomm=')
assert result == 'dash'

3.14. Example 13: Streaming Results from a Command 11

Sultan Documentation, Release 0.9.1

12 Chapter 3. Sultan Examples

CHAPTER 4

Sultan SSH Examples

This tutorial will go through various examples to help in better understanding how to use Sultan over SSH. Each
example will build on the lessons learned from the previous examples.

4.1 WARNING * WARNING * WARNING

When you’re using Sultan, you are running commands directly on your local shell, so please, do not run untested and
untrusted code. You are taking the risk if you are running untrusted code.

Sultan runs POpen with shell=True, and according to Python documentation, this can be a security hazard if combined
with untrusted input. More information can be found here:

• Python 2: https://docs.python.org/2/library/subprocess.html#frequently-used-arguments

• Python 3: https://docs.python.org/3/library/subprocess.html#frequently-used-arguments

4.2 Example 1: SSH to Remote Host as the Current User

By default, you can simply specify the host to sultan, and calling the commands like you normally do. This uses the
username of the user who is executing the script, and connects you to the remote host.

from sultan.api import Sultan

with Sultan.load(hostname='aeroxis.com') as sultan:
s.yum('install', '-y', 'tree').run()

Sultan will connect to the remote host, and run yum install -y tree. This is what is passed to your shell to execute the
command (assuming your username is davydany):

ssh davydany@aeroxis.com 'yum install -y tree;'

4.3 Example 2: SSH to Remote Host as a Different User

You can specify a different user to execute the remote commands by using the user parameter, like this:

with Sultan.load(user='elon.musk', hostname='aeroxis.com') as s:
s.yum('install', '-y', 'tree').run()

13

https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://docs.python.org/3/library/subprocess.html#frequently-used-arguments

Sultan Documentation, Release 0.9.1

And this will execute:

ssh elon.musk@aeroxis.com 'yum install -y tree;'

4.4 Example 3: Passing Additional Options (Port)

Added in v0.6

If you need to pass additional options for the port, use the SSHConfig class to configure the SSH Connection.:

from sultan.api import Sultan, SSHConfig

port = 2222
config = SSHConfig(port=port)
with Sultan.load(user='elon.musk',

hostname='aeroxis.com',
ssh_config=config) as s:

s.yum('install', '-y', 'tree').run()

which will yield:

ssh -p 2222 elon.musk@aeroxis.com 'yum install -y tree;'

4.5 Example 4: Passing Additional Options (Identity File)

Added in v0.6

If you need to pass additional options for the port, use the SSHConfig class to configure the SSH Connection.:

from sultan.api import Sultan, SSHConfig

path_to_identity_file = '/home/elon.musk/keys/elon.musk.identity'
config = SSHConfig(identity_file=path_to_identity_file)
with Sultan.load(user='elon.musk',

hostname='aeroxis.com',
ssh_config=config) as s:

s.yum('install', '-y', 'tree').run()

which will yield:

ssh -i /home/elon.musk/keys/elon.musk.identity elon.musk@aeroxis.com 'yum install -y
→˓tree;'

14 Chapter 4. Sultan SSH Examples

CHAPTER 5

What is Sultan?

Sultan is a Python package for interfacing with command-line utilities, like yum, apt-get, or ls, in a Pythonic manner.
It lets you run command-line utilities using simple function calls.

The simplest way to use Sultan is to just call it:

from sultan.api import Sultan
s = Sultan()
s.sudo("yum install -y tree").run()

Runs:

sudo yum install -y tree;

The recommended way of using Sultan is to use it in Context Management mode. Here is how to use Sultan with
Context Management:

from sultan.api import Sultan

with Sultan.load(sudo=True) as s:
s.yum("install -y tree").run()

Runs:

sudo su - root -c 'yum install -y tree;'

What if we want to install this command on a remote machine? You can easily achieve this using context management:

from sultan.api import Sultan

with Sultan.load(sudo=True, hostname="myserver.com") as sultan:
sultan.yum("install -y tree").run()

Runs:

ssh root@myserver.com 'sudo su - root -c 'yum install -y tree;''

If you enter a wrong command, Sultan will print out details you need to debug and find the problem quickly.

Here, the same command was run on a Mac:

from sultan.api import Sultan

15

Sultan Documentation, Release 0.9.1

with Sultan.load(sudo=True, hostname="myserver.com") as sultan:
sultan.yum("install -y tree").run()

Yields:

[sultan]: sudo su - root -c 'yum install -y tree;'
Password:
[sultan]: --{ STDERR }--
→˓---------------------------------------
[sultan]: | -sh: yum: command not found
[sultan]: --
→˓---------------------------------------

Want to get started? Simply install Sultan, and start writing your clean code:

pip install --upgrade sultan

If you have more questions, check the rest of the docs, or reach out at Github: https://github.com/aeroxis/sultan

5.1 WARNING * WARNING * WARNING

When you’re using Sultan, you are running commands directly on your local shell, so please, do not run untested and
untrusted code. You are taking the risk if you are running untrusted code.

Sultan runs POpen with shell=True, and according to Python documentation, this can be a security hazard if combined
with untrusted input. More information can be found here:

• Python 2: https://docs.python.org/2/library/subprocess.html#frequently-used-arguments

• Python 3: https://docs.python.org/3/library/subprocess.html#frequently-used-arguments

16 Chapter 5. What is Sultan?

https://github.com/aeroxis/sultan
https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://docs.python.org/3/library/subprocess.html#frequently-used-arguments

	Installing Sultan
	Frequently Asked Questions
	What is Sultan?
	Why use Sultan?
	Why can't I use subprocess?
	Any reason to use this over ansible or saltstack?

	Sultan Examples
	WARNING * WARNING * WARNING
	Example 1: Getting Started
	Example 2: Sultan with Context Management
	Example 3: Compounding with And (&&) and Or (||)
	Example 4: Redirecting with Pipes (|)
	Example 5: Redirecting Output to File
	Example 6: Read from Standard Input
	Example 7: Running as Another User
	Example 8: Running as Root
	Example 9: Disable Logging
	Example 10: Commands with Hyphones (i.e.: apt-get)
	Example 11: Sourcing a File before Running a Command
	Example 12: Results from a Command
	Example 13: Streaming Results from a Command
	Example 14: Custom Executable

	Sultan SSH Examples
	WARNING * WARNING * WARNING
	Example 1: SSH to Remote Host as the Current User
	Example 2: SSH to Remote Host as a Different User
	Example 3: Passing Additional Options (Port)
	Example 4: Passing Additional Options (Identity File)

	What is Sultan?
	WARNING * WARNING * WARNING

