
Sultan Documentation
Release 0.5.1

Aeroxis, LLC

Jun 12, 2017

Table of Contents

1 Installing Sultan 3

2 Frequently Asked Questions 5
2.1 What is Sultan? . 5
2.2 Why use Sultan? . 5
2.3 Why can’t I use subprocess? . 6
2.4 Any reason to use this over ansible or saltstack? . 6

3 Examples 7
3.1 Example 1: Getting Started . 7
3.2 Example 2: Sultan with Context Management . 7
3.3 Example 3: Compounding with And (&&) and Or (||) . 8
3.4 Example 4: Redirecting with Pipes (|) . 8
3.5 Example 5: Redirecting Output to File . 8
3.6 Example 6: Read from Standard Input . 8
3.7 Example 7: Running as Another User . 9
3.8 Example 8: Running as Root . 9
3.9 Example 9: Disable Logging . 9

4 What is Sultan? 11

i

ii

Sultan Documentation, Release 0.5.1

Command and Rule Over Your Shell

Table of Contents 1

Sultan Documentation, Release 0.5.1

2 Table of Contents

CHAPTER 1

Installing Sultan

Sultan is simple and lightweight. To install Sultan, simply run the following in your command line:

pip install --upgrade sultan

3

Sultan Documentation, Release 0.5.1

4 Chapter 1. Installing Sultan

CHAPTER 2

Frequently Asked Questions

What is Sultan?

Sultan allows you to interface with command-line utilities from Python without having to write your scripts in Bash.

Why use Sultan?

Leverage the Power of Bash from Python

Bash, while it seems arcaine, actually is quiet powerful! Creating a Tar Archive of a directory requires us to read up
on the tar API or check StackOverflow, but if you know how to do it in Bash, you’d be done before you finish reading
the StackOverflow post!

This promotes simplicity, and follows the KISS principle (Keep It Simple Stupid!)

Better Syntax:

Bash’s syntax for loops, conditionals, and functions work well, but require a lot of nuances that we’re just not used to
with a modern language like Python.

Sultan allows you to use Python Syntax, and never touch Bash’s arcaine syntax ever again!

Project Management:

Sultan was designed because Bash just does not scale well with most projects. As much as we can try, Bash does not
have a proper package management system. So, we’re left with script files that are sourced, and called, but it gets quiet
complicated as soon as you have more than 10 scripts.

Python has a great package and module system that allows us to create complex projects using the Python language,
but also leverage a lot of great tools and functionality that we’ve grown to love and expect from Bash.

This promotes reusability, with the DRY (Don’t Repeat Yourself) principle. If you create a great solution with Sultan,
publish it on PyPi and others will use it.

5

Sultan Documentation, Release 0.5.1

Unit Testing

Out of the Box, Bash does not come with any Unittesting frameworks, but Python does! You can build unittests and
integration tests with Sultan to ensure your code does EXACTLY what you want it to do.

Why can’t I use subprocess?

Python’s standard library offers the subprocess library, but it isn’t very “Pythonic”. The ‘subprocess’ module has a
bunch of methods for writing commands to the shell, but the code is overly verbose, and tough to read.

Any reason to use this over ansible or saltstack?

Sultan is just a simpler interface to command line utilities. It helps bypass the arcane language constructs of Bash
(among other things. See Why use Sultan? above).

Sultan was created to help with scripts that we create with Bash, that tend to get complex. When these scripts get
complex, Bash just gets to be a pain to deal with, since it lacks proper package management, it lacks unit testing, and
<insert library that you need for managing complex scripts>. So Sultan allows scripts to be reusable and tested with
standard Python.

Ansible and Salt are powerful for provisioning a system. Sultan can’t compete in that realm, but it does help with
complex scripts. Even if you want Ansible or Salt to perform something on a remote box, like installing a package, it
requires some overhead in setting them up. Sultan is simple with no external dependencies, and installs itself with just
“pip install sultan”.

Sultan simply wraps the subprocess module in Python’s standard library, but it also provides a nice to read logging
system, and provides you with relevant information when a command fails.

All in all, it can’t compete with standard DevOps tools used for provisioning. It does help with not having to use Bash
heavily, if you’re a Python programmer.

6 Chapter 2. Frequently Asked Questions

CHAPTER 3

Examples

This tutorial will go through various examples to help in better understanding how to use Sultan. Each example will
build on the lessons learned from the previous examples.

Example 1: Getting Started

We typically use yum or apt-get to install a package on our system. This example installs a package on our system
using Sultan. Here is how to get started:

from sultan.api import Sultan

s = Sultan()
s.yum("install", "-y", "tree").run()

Sultan allows multiple syntaxes depending on what your first command is. Suppose you want to not use separate
tokens, and instead you want to use one string, you can write the above example as such:

from sultan.api import Sultan

s = Sultan()
s.yum("install -y tree").run()

Suppose your user is not a root-user, and you want to call to sudo to install the tree package. You’d do the following:

from sultan.api import Sultan

with Sultan.load(sudo=True) as s:
s.yum('install -y tree').run()

NOTE: For the sake of brevity, this tutorial will now start to assume that Sultan has been imported from sultan.api
and, the variable s has been instantiated as an instance of Sultan (s = Sultan()). This will change in situations where
the documentation requires a different usage.

Example 2: Sultan with Context Management

There are times when we want to manage the context of where Sultan executes your code. To aid with this, we use
Sultan in Context Management mode.

Suppose we want to cat out the contents of /etc/hosts, we’d do the following:

7

Sultan Documentation, Release 0.5.1

with Sultan.load(cwd="/etc") as s:
s.cat("hosts").run()

Example 3: Compounding with And (&&) and Or (||)

There are times when we need multiple commands to run at once. We use the and_() command to get through this.
Here is an example:

runs: 'cd /tmp && touch foobar.txt'
with Sultan.load() as s:

s.cd("/tmp").and_().touch("foobar.txt").run()

There are also times that we want to run 2 commands, but run the 2nd command even if the first command fails. For
this, you will need to use the or_() command. Here is an example:

runs: 'mkdir /tmp || mkdir /bar'
with Sultan.load() as s:

s.mkdir('/tmp').or_().mkdir('/bar').run()

Example 4: Redirecting with Pipes (|)

In Bash, we use the pipe | operator to redirect the output of the call to a command to another command. We do this in
Sultan with the pipe command. Here is an example:

runs: 'ls -l | sed -e "s/[aeio]/u/g"'
with Sultan.load() as s:

s.ls('-l').pipe().sed('-e', '"s/[aeio]/u/g"').run()

Example 5: Redirecting Output to File

In Bash, we often want to redirect the output of a command to file. Whether the output is in stdout or stderr, we can
redirect it to a file with Sultan. Here is an example:

runs: 'cat /etc/hosts > ~/hosts'
with Sultan.load() as s:

s.cat("/etc/hosts").redirect(
"~/hosts",
append=False,
stdout=True,
stderr=False).run()

In the example above, we redirected the output of /etc/hosts to ~/hosts. We only outputted the stdout, and didn’t append
to the file if it existed. Feel free to customize this method as it fits your needs.

Example 6: Read from Standard Input

Python has the raw_input built-in to read from standard input. Sultan’s API wraps around raw_input to ask the user
for their input from the command line and returns the value.

8 Chapter 3. Examples

Sultan Documentation, Release 0.5.1

Here is the example:

name = s.stdin("What is your name?")
print "Hello %s" % name

Example 7: Running as Another User

Sultan can run commands as another user. You need to enable sudo mode to do this.

Here is an example:

runs: sudo su - hodor -c 'cd /home/hodor && ls -lah .;'
with Sultan.load(sudo=True, user='hodor', cwd='/home/hodor') as s:

sultan.ls('-lah', '.').run()

Example 8: Running as Root

Sultan can run commands as the root user. You need to only enable sudo mode to do this.

Here is an example:

runs: sudo su - root -c 'ls -lah /root;'
with Sultan.load(sudo=True) as sultan:

sultan.ls('-lah', '/root').run()

Example 9: Disable Logging

If you need to disable logging all together, simply add set ‘logging’ to False while loading Sultan with Context.

Here is an example:

runs without logging
with Sultan.load(logging=False) as sultan:

sultan.ls('-lah', '/tmp').run()

3.7. Example 7: Running as Another User 9

Sultan Documentation, Release 0.5.1

10 Chapter 3. Examples

CHAPTER 4

What is Sultan?

Sultan is a Python package for interfacing with command-line utilities, like yum, apt-get, or ls, in a Pythonic manner.
It lets you run command-line utilities using simple function calls.

The simplest way to use Sultan is to just call it:

from sultan.api import Sultan
s = Sultan()
s.sudo("yum install -y tree").run()

Runs:

sudo yum install -y tree;

The recommended way of using Sultan is to use it in Context Management mode. Here is how to use Sultan with
Context Management:

from sultan.api import Sultan

with Sultan.load(sudo=True) as s:
s.yum("install -y tree").run()

Runs:

sudo su - root -c 'yum install -y tree;'

What if we want to install this command on a remote machine? You can easily achieve this using context management:

from sultan.api import Sultan

with Sultan.load(sudo=True, hostname="myserver.com") as sultan:
sultan.yum("install -y tree").run()

Runs:

ssh root@myserver.com 'sudo su - root -c 'yum install -y tree;''

If you enter a wrong command, Sultan will print out details you need to debug and find the problem quickly.

Here, the same command was run on a Mac:

from sultan.api import Sultan

11

Sultan Documentation, Release 0.5.1

with Sultan.load(sudo=True, hostname="myserver.com") as sultan:
sultan.yum("install -y tree").run()

Yields:

[sultan]: sudo su - root -c 'yum install -y tree;'
Password:
[sultan]: --{ STDERR }--
→˓---------------------------------------
[sultan]: | -sh: yum: command not found
[sultan]: --
→˓---------------------------------------

Want to get started? Simply install Sultan, and start writing your clean code:

pip install --upgrade sultan

If you have more questions, check the rest of the docs, or reach out at Github: https://github.com/aeroxis/sultan

12 Chapter 4. What is Sultan?

https://github.com/aeroxis/sultan

	Installing Sultan
	Frequently Asked Questions
	What is Sultan?
	Why use Sultan?
	Why can't I use subprocess?
	Any reason to use this over ansible or saltstack?

	Examples
	Example 1: Getting Started
	Example 2: Sultan with Context Management
	Example 3: Compounding with And (&&) and Or (||)
	Example 4: Redirecting with Pipes (|)
	Example 5: Redirecting Output to File
	Example 6: Read from Standard Input
	Example 7: Running as Another User
	Example 8: Running as Root
	Example 9: Disable Logging

	What is Sultan?

